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SUMMARY

A well-recognized approach for handling the incompressibility constraint by operating directly on the
discretized Navier–Stokes equations is used to obtain the decoupling of the pressure from the velocity
�eld. By following the current developments by Guermond and Shen, the possibilities of obtaining
accurate pressure and reducing boundary-layer e�ect for the pressure are analysed. The present study
mainly reports the numerical solutions of an unsteady Navier–Stokes problem based on the so-called
consistent splitting scheme (J. Comput. Phys. 2003; 192:262–276). At the same time the Dirichlet
boundary value conditions are considered. The accuracy of the method is carefully examined against
the exact solution for an unsteady �ow physics problem in a simply connected domain. The e�ectiveness
is illustrated viz. several computations of 2D double lid-driven cavity problems. Copyright ? 2005 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Over the last 30 years, the fractional-step projection method (or the pressure correction
method) developed by Chorin [1, 2] and T�emam [3, 4] has been greatly proclaimed as an
e�ective tool for solving unsteady incompressible viscous �ow problems. The most attractive
features of this method are its extreme simplicity and the robustness of the solutions of the
decoupled velocity and pressure. Comprehensive reviews of di�erent formulations and the
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results obtained are presented in References [5–9]. An overview of this latest development in
unsteady incompressible viscous �ow is given in Reference [10].
Recently, Guermond and Shen [11] introduced the consistent splitting scheme for solv-

ing unsteady �ow problems. Three main characteristics are present in the scheme. One
is the self-maintenance concept of the usual fractional-step projection method, such that
the incompressibility constraint is directly satis�ed by solving the Poisson problem for the
pressure. Instead of determining the pressure, the auxiliary pressure is calculated. Another
is the diminishment of the boundary-layer e�ect for the pressure, such that an extra
divergence-free term derived from the viscosity term is included in the pressure Poisson
equation in a weak sense. The last is that there is no need to determine an intermediate
velocity.
A lot of work has been carried out on the theoretical justi�cations and numerical veri�ca-

tions of unsteady Navier–Stokes and Stokes problems [11–14] based on the crucial formulation
of adding an extra divergence-free term for correcting the pressure. Still, there is a lack of
practical investigation on the numerical performance of the scheme of the Navier–Stokes case.
In this article, moderate Reynolds numbers for the double lid-driven cavity problem are studied
and compared with other numerical results. Pan and Glowinski [15] (see also Reference [8]
in detail) were among the few who solved the two-sided wall-driven cavity problem. Using
the primitive variable formulation, they studied the parametric case of the critical Reynolds
number that lies in between 4000 and 5000 when the regular grid of 256× 256 is used and
the time step-size is �t=0:0005. They concluded that a Hopf bifurcation and a break of sym-
metry would appear at Re=5000 when long time simulations were made. The term ‘double
lid-driven cavity’ problem was probably �rst introduced by Ben-Artzi et al. [16] who obtained
the steady-state solution for the case with Re=10000 and a 257× 257 grid at t6 45 using the
vorticity=stream-function formulation. They considered that the �ow starts impulsively from
zero. In a more recent paper by Ben-Artzi et al. [17], a break of symmetry was indicated
for the double lid-driven cavity problem for Re falling into the range from 2000 to 3200. Up
to the present time, it seems that a Hopf bifurcation does hold for this problem. Kupferman
[18] obtained the steady-state solution for the case with Re=20000 and a 128× 128 grid at
t6 18 using the vorticity=stream-function formulation. Based on the �nite di�erence frame-
work, the same investigator used the Kurganov and Tadmor central-di�erence scheme [19]
for solving the advection term, the Altas et al. compact stencil [20] for solving the bihar-
monic viscous term and an algebraic multigrid solver [21] for solving the fourth-order elliptic
equation.
In the present study, we report detailed numerical veri�cations of the mixed �nite element

consistent splitting scheme, and then study numerical simulations for the double lid-driven
cavity by making use of two di�erent mesh layouts. Using a �ne grid mesh with 513× 513
points, the double-lid driven cavity is solved for Re=10000 with respect to the two di�erent
directions of the moving lids. The results for the evolution of a symmetric pair of vortical
structures are obtained.
In Section 2, we review the governing equations of the unsteady incompressible viscous

�ows. We provide a brief description of the consistent splitting scheme in Section 3 and
more detail on the concept of numerical implementation and discretization. The applica-
tions of the scheme and the computational test cases are illustrated and discussed in Section
4. In Section 5, we present our numerical examples, and end with concluding remarks in
Section 6.
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2. GOVERNING EQUATION

Let � be a bounded domain in Euclidean space R2 with a piecewise smooth boundary @�.
A �xed �nal time is denoted by T. We shall be concerned with the two-dimensional (2D)
unsteady (transient or time-dependent) Navier–Stokes (NS) equation of incompressible viscous
�uid in a dimensional form:

@u
@t
+ u · ∇u=− 1

�
∇p+ �∇2u+ f in �× (0; T ] (1)

with

∇ · u=0 in �× [0; T ] (2)

where t is the time(s) and x=(x; y) is a function of 2D position in the Cartesian co�ordinate
system; u= u(x; t), p=p(x; t), � and � are the velocity vector, pressure, density and kinematic
viscosity, respectively; f =(fx; fy) is the 2D given force vector; ∇, ∇2 and ∇ · are the
gradient, Laplacian and divergence operators, respectively. The spatial and temporal domain
of a solution is denoted by �× [0; T ]. Dirichlet boundary conditions on the velocity vector are:

u= b(x; t) on @�× [0; T ] (3)

with§ ∫
@�
n · b dS=0 (4)

where b is a known velocity vector function on the entire boundary @� of � (or @� being
the piecewise smooth boundary of �), and n is the outward-pointing normal vector on @�.
Initial conditions are:

u(x; t=0)= u0(x); x∈ �� (5)

with¶

∇ · u0 = 0; x∈ �� (6)

and

n · u0 = n · b(x; t=0) on @� (7)

where u0 is a prescribed velocity vector function and ��=�∪ @� will denote the closure of
�. Note that if any of the three constraints on the input data, Equations (4), (6) and (7), are

§This expression is simply the divergence theorem, which is equivalent to a mass conservation law, stating that the
total volume of all sinks and sources, i.e. the volume integral of the divergence, is equal to the net �ow across
the volume’s boundary, i.e.

∫
�

∇ · b d�=
∫
@�
n · b dS =0

¶This constraint is simply the incompressibility constraint, stating that the initial data must satisfy the divergence-
free condition.
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violated, the problem is ill-posed and no solution exists (see e.g. Reference [5]). In addition,
the data are assumed to be regular enough and to satisfy all the compatibility conditions
needed for a smooth solution to exist for all time (see e.g. Reference [22]).
Let us mention the crucial idea that the pressure is uniquely determined up to an additive

constant. Problems of the form ∫
�
p(x; t) d�=0 (8)

with p(x; t)+Const can be considered as a variety of pressure solutions to the Navier–Stokes
equations. It is noted that the mathematical expression p(x; t) + Const can be traced back to
the Lady	zhenskaya book [23, p. 47]. It is worthwhile to mention that an arbitrary constant
does not depend on spatial variables. To see this, take the gradient operator acting on the
pressure scalar �eld, so we have

∇(p(x; t) + Const) =∇(p(x; t)) +∇(Const)︸ ︷︷ ︸
=0

=∇(p(x; t)) (9)

In the Lady	zhenskaya review article [24], an arbitrary constant may be dependent on temporal
variables. We adopt her notations and de�ne the pressure scalar �eld such that

p(x; t; Const(t))=p(x; t) + Const(t) (10)

Equation (10) states that the pressure plus any arbitrary constant varying with time is also a
solution of the pressure in the Navier–Stokes system.‖

For the incompressible Navier–Stokes equations (cf. Equations (1)–(2)), the dimensionless
variables can be constructed by introducing a reference length L and a reference velocity U
and given as

(x; y)=
1
L
(x+; y+); (u; v)=

1
U
(u+; v+); p=

p+

�U 2 ; t=
t+U
L

; f =
L
U 2 f

+ (11)

The symbol + denotes dimensional variables. The variables u+ and v+ are the velocity com-
ponents in x+ and y+ directions, p+ is the pressure, t+ is the time and f+ is the force term.
Substitution of these variables into Equations (1)–(2) yields

@u
@t
+ u · ∇u=−∇p+ 1

Re
∇2u+ f in �× (0; T ] (12)

with

∇ · u=0 in �× [0; T ] (13)

‖If the pressure datum is known beforehand, then the whole pressure scalar �eld either shifts above the datum by
+Const(t)∀t¿0, or below the datum by −Const(t)∀t¿0.
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where we have denoted the dimensionless variables by the same symbols as the corresponding
dimensional ones. The non-dimensional number Re=LU=� (or inertial force=viscous force),
known as the Reynolds number, often serves to characterize the features of the �uid �ow �eld.

3. CONSISTENT SPLITTING SCHEME

Based on the unsteady-state Stokes and hyperbolic systems with the operator-splitting tech-
nique, Timmermans et al. [25] has investigated the palliations of the arti�cial Neumann
boundary condition for the pressure, in which the correction term for the pressure should
be added. By making use of Goda’s pressure-correction technique [26], higher-order accura-
cies for the pressure can be achieved. More signi�cantly, the pressure approximation is no
longer spoiled by a numerical boundary layer produced by an arti�cial Neumann boundary
condition (cf. Equation (19)). The mathematical proof of stability analysis on this develop-
ment was put forward by Guermond and Shen [11]. The latest development of the consistent
splitting scheme can be found in Reference [10].
The main ideas of the consistent splitting scheme can be summarized as follows: (1)

multiplying Equation (12) by a test function∗∗ ∇q; ∀q∈H 1 and isolating the pressure gra-
dient as an unknown variable, and then obtaining the weak form of the pressure Poisson
equation, (2) using the div-curl identity ∇2u=∇(∇ · u)−∇ × ∇ × u=−∇ × ∇ × u for replac-
ing ∇2u, (3) applying Equation (12) for simplifying the non-linear inertial term and source
term, and putting the viscous term and time derivative term into the �nal form, (4) using the
gradient operator property for grouping the divergence-free term times the Reynolds number
by selecting the arbitrary constant 1=Re, i.e. (1=Re)(∇2u − ∇ × ∇ × u)= (1=Re)∇(∇ · u), (5)
introducing the auxiliary pressure variable �, and extracting the pressure correction term
plus the new term (1=Re)∇ · u, (6) solving � using Equation (18) �rst and then the pres-
sure by Equation (19), and (7) keeping the fractional-step projection methods in place, i.e.
Equations (17)–(18).
A second-order decoupled approximation to the non-dimensional Navier–Stokes system is

de�ned as follows: Let u0 = u−1 = u(x; 0), p0 =p−1 =p(x; 0). Let (un; pn) be the nth time-
step to (u(x; n�t); p(x; n�t)). For n=1, �nd u1 and p1 such that

u1 − u0
�t

+ (u0 · ∇)u1 + 1
2
(∇ · u0)u1 − 1

Re
∇2u1 +∇p0 = f1

u1|@� = b1
(14)

∗∗On �, the space of square integrable functions

L2(�) :=
{
q

∣∣∣∣
∫
�

|q|2 d�¡∞
}

and the subspace

H 1(�) := {w|w ∈ L2(�); gradw ∈ (L2(�))nd}

of L2(�) are de�ned, where nd is the space dimension of the problem.
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(∇�1;∇q) =
(
u1 − u0
�t

;∇q
)

∀q∈H 1(�) (15)

p1 =�1 + p0 − 1
Re

∇ · u1 (16)

Note that we use the �rst-order discretization in space, together with the backward Euler
discretization in time. Then, for n¿ 1, �nd un+1 and pn+1 such that

3un+1 − 4un + un−1
2�t

+ ((2un − un−1) · ∇)un+1 + 1
2
(∇ · (2un − un−1))un+1

− 1
Re

∇2un+1 +∇(2pn − pn−1)= fn+1

un+1|@� = bn+1

(17)

(∇�n+1;∇q) =
(
3un+1 − 4un + un−1

2�t
;∇q

)
∀q∈H 1(�) (18)

pn+1 =�n+1 + 2pn − pn−1 − 1
Re

∇ · un+1 (19)

The boundary conditions on the velocity un+1|@� = bn+1 are essential.

3.1. Temporal discretization

A fully implicit second-order backward di�erentiation formula (BDF) is used for the time
derivative that is of accuracy O(�t2), i.e.(

@u
@t

)n+1

=
3un+1 − 4un + un−1

2�t
+ O(�t2) (20)

This scheme is usually recommended for the time discretization of the time derivative term,
because the scheme is stable and second-order accurate.

3.2. Treatment of non-linear term

The treatment of the non-linear advection term transformed into a linear advection one using a
linear extrapolation in time was discussed by Turek [27]. The non-linear term (un+1 · ∇)un+1 is
replaced in a semi-implicit way by (un · ∇)un+1 or ((2un − un−1) · ∇)un+1. The two
corresponding terms have di�erent numerical accuracies in each time step. The former is
of �rst-order only, while the latter is of second order. As suggested by T�emam [3, 4] and
considered by many others (see e.g. Reference [28, p. 444]), adding the kinetic term that
is regarded somewhat as the skew-symmetric form can have no restriction on the choice
of time step �t, which guarantees an unconditional stability. To enhance the accuracy, we
use 1

2 (∇ · (2un − un−1))un+1. More importantly, when the approximate velocity �elds do not
exactly satisfy the incompressibility condition, this term plays an essential rôle in preserving
the dissipativity of the discrete system (see e.g. Reference [29]).
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3.3. Homogenous Neumann boundary condition

When working on the homogenous Neumann boundary condition, one has to pay special
attention; it is well known that the solution of Equation (18) is known up to an additional
constant when subjected to the homogenous Neumann boundary condition [30, Chapter xi].
As noted in literature, there are two common ways of obtaining a pressure scalar �eld solution
uniquely to the NS system. It can be done by

Option I: Imposing an additional condition on �(x; t; Const(t)) such as specifying one point
�(x0; y0; t; Const(t)) on the boundary @� (a point of interest (x0; y0) must be adjusted)
Option II: Requiring that the integral of �(x; t; Const(t)) over � is equal to zero or can be
interpreted as the average value, i.e.∫

�
�(x; t; Const(t)) d�=0 (21)

In the course of the numerical calculation for solving a singular (elliptic) Poisson problem,
one may run into these two options. For the study of the �rst option in hydrodynamic stability,
see e.g. Reference [23, Chapter 1, p. 24] and especially the surveys [31, p. 55; 32, p. 152]. To
remedy this di
culty more handily, a �xed Dirichlet pressure boundary value on the boundary
that does not vary with time is commonly found in applications of �ow physics problems
such as the 2D lid-driven cavity (see e.g. Reference [33, p. 33] or [34, p. 121]). Assigning
a �xed value is also directly suited for the numerical veri�cation of some existing numerical
schemes [25]. This will be the measure that we shall use for our numerical calculations in
this paper.

3.4. Spatial discretization

The �nite element formulations based on the Galerkin weighted residual approach are used
for the discretization of the governing equations. Velocities, auxiliary pressures and pressures
are taken as the primitive unknown variables. By �rst multiplying Equations (17)–(19) by
corresponding test functions w, q, and m, and integrating the corresponding equations over
�, using the integration by parts in Equation (17), and choosing w with a zero trace on @�,
�nd (u; �; p)∈X×H 1(�)×L2(�) such that

∀w∈X0 = (H 1
0 (�))

2 with w|@� =0:(
3un+1 − 4un + un−1

2�t
;w
)

+
(
((2un − un−1) · ∇)un+1 + 1

2
(∇ · (2un − un−1))un+1;w

)
+
1
Re
(∇un+1;∇w)− (2pn − pn−1;∇ ·w)= (fn+1;w)

un+1|@� = bn+1

(22)

∀q ∈ H 1(�):
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(∇�n+1;∇q) =
(
3un+1 − 4un + un−1

2�t
;∇q

)
(23)

∀m ∈ L2(�):

(pn+1; m) =
(
�n+1 + 2pn − pn−1 − 1

Re
∇ · un+1; m

)
(24)

The �nite element approximation of the given problem is obtained simply by replacing the
functional space X×H 1(�)×L2(�) in Equations (22)–(24) by the �nite element subspace
Xh ×Qh ×Mh such that: Find (uh; �h; ph)∈Xh ×Qh ×Mh such that

∀wh ∈X0; h with wh|@� =0:(
3un+1h − 4unh + un−1h

2�t
;wh

)

+
(
((2unh − un−1h ) · ∇)un+1h +

1
2
(∇ · (2unh − un−1h ))un+1h ;wh

)
+
1
Re
(∇un+1h ;∇wh)− (2pn

h − pn−1
h ;∇ ·wh)= (fn+1;wh)

un+1h |@� = bn+1

(25)

∀qh ∈ Qh:

(∇�n+1
h ;∇qh) =

(
3un+1h − 4unh + un−1h

2�t
;∇qh

)
(26)

∀mh ∈ Mh:

(pn+1
h ; mh) =

(
�n+1

h + 2pn
h − pn−1

h − 1
Re

∇ · un+1h ; mh

)
(27)

The mixed �nite element of choice is the Taylor-Hood type, and {P2;P1;P1} elements
and their respective shape functions are used, as illustrated in Figure 2. This choice veri�es
the discrete inf–sup condition, which ensures the uniqueness and existence of the solution
of the discrete version of the steady Stokes problem. For a complete discussion, we refer
the reader to References [35, 36]. Let us introduce a regular triangulation of �, with a �nite
number of triangles Kl, l=1; Nh, where Nh stands for the total number of triangles. We de�ne
Xh by

Xh= {wh ∈C0(�) :wh|Kl ∈P2;∀l=1; Nh} (28)
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Figure 1. Geometry of the 2D double lid-driven cavity with velocity boundary conditions.

Figure 2. {P2;P1;P1} for {uh; �h; ph}.

and then de�ne Qh by

Qh= {qh ∈C0(�) : qh|Kl ∈P1;∀l=1; Nh} (29)

and �nally de�ne Mh by

Mh= {mh ∈C0(�) :mh|Kl ∈P1;∀l=1; Nh} (30)

the space Pr denote the sets of polynomials of degree r in each Kl, i.e. for r¿ 0:

Pr :=

{
w :Kl → R; w(x; y)=

∑
06i+j6r

�ijxiyj

}
(31)
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After the domain is discretized into �nite elements, local element matrices are �rst
calculated, and then assembled to form global matrices. The matrix forms of Equations
(25)–(27) are

(1) Given approximate velocities, {Un
h ; U

n−1
h ; V n

h ; V n−1
h }, and corresponding pressures

{Pn
h ; P

n−1
h }, solve
[
3
2�t

M+ C2Un
h −Un−1

h
+ C2Vn

h −Vn−1
h

+
1
2
K[2Un

h −Un−1
h ;2Vn

h −Vn−1
h ] +

1
Re
S

]
Un+1

h

=
2
�t
MUn

h − 1
2�t

MUn−1
h + Fn+1

U − DX(2Pn
h − Pn−1

h ) (32)

and

[
3
2�t

M+ C2Un
h −Un−1

h
+ C2Vn

h −Vn−1
h

+
1
2
K[2Un

h −Un−1
h ;2Vn

h −Vn−1
h ] +

1
Re
S

]
Vn+1
h

=
2
�t
MVn

h − 1
2�t

MVn−1
h + Fn+1

V − DY(2Pn
h − Pn−1

h ) (33)

for approximate velocities at time tn+1.
(2) Using approximate velocities, solve the auxiliary pressure �n+1

h

Ŝ�n+1
h =− 1

�t

(
D̂X

(
3Un+1

h − 4Un
h +Un−1

h

2

)
+ D̂Y

(
3Vn+1

h − 4Vn
h + Vn−1

h

2

))
(34)

(3) Using approximate velocities, solve the transfer pressure �n+1
h

M̂�n+1
h =− 1

Re
(D̂XUn+1

h + D̂YVn+1
h ) (35)

(4) Update the pressure at time tn+1 viz.

Pn+1
h =�n+1

h + (�n+1
h + 2Pn

h − Pn−1
h ) (36)

(5) Repeat steps 1–4 until a �nal number of time steps is reached.

For the sake of clarity, Un+1
h , Vn+1

h , �n+1
h , �n+1

h and Pn+1
h are the vectors containing unknowns

at the (n+ 1)th time step and M, C2Un
h −Un−1

h
, C2Vn

h −Vn−1
h
, K[2Un

h −Un−1
h ;2Vn

h −Vn−1
h ], S, DX, DY, F

n+1
U

and Fn+1V represent the consistent mass matrix, the convective matrix w.r.t†† the u-comp.,‡‡ the
convective matrix w.r.t the v-comp., the kinetic matrix, the di�usion matrix, the gradient matrix
w.r.t the x-comp., the gradient matrix w.r.t the y-comp., the force vector w.r.t the x-comp.,
and the force vector w.r.t the y-comp, respectively, and Ŝ, D̂X, D̂Y and M̂ denote the di�usion

††with respect to
‡‡component
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matrix, the divergence matrix w.r.t the x-comp., the divergence matrix w.r.t the y-comp. and
the consistent mass matrix, respectively.

Remarks
The following numerical implementations were made within an in-house code that was based
on the above algorithm.

(i) To compute all the element integrals we use classical quadrature formulae of Gaussian
type. The integration over the triangles is performed in terms of the Gaussian quadrature
rules using a four-point formula for the P1 interpolation and a seven-point formula for
the P2 interpolation.

(ii) Except the convective and kinetic matrices, all the matrices are computed once and
stored in sparse matrix formats.

(iii) Operated with the SPARSKIT package borrowed from Saad [37], preconditioners for
sparse GMRES iterative solvers derived from threshold-based ILUT factorizations were
used. The following selective parameters were used for all performance tests unless oth-
erwise stated: the number of �ll-in elements per row is 50; calculation is terminated
when the relative precision is below �=10−8; and convergence of the iterative pro-
cess was �xed by a speci�c number of iteration. We shall provide more details in
Section 4.

(iv) Let Nv= dim(Xh) and Np= dim(Mh) (or N�= dim(Qh)) be the total number of
velocity=pressure (or auxiliary pressure) interpolation nodes in term of the mixed FE
approximation (i.e. P2=P1). To assign the dimensionality of two di�erent types of
matrices, {DX;DY} and {D̂X; D̂Y}, we have Nv ×Np and Np ×Nv, respectively. To link
between two di�erent types of FE interpolations and match the same degree of freedom
of {Pn

h ; P
n−1
h } in step 1, {Un+1

h ; Un
h ; U

n−1
h } in step 2 and {Vn+1

h ; V n
h ; V n−1

h } in step 2, all
these coe
cient matrices are of rectangular form. The integration over the triangles
is performed in terms of the Gaussian quadrature rules using a seven-point formula
for a combination of P1 and P2. Another way to calculate the gradient matrices that
maintain a full rank is by the P2 FE approximation. In doing so, we take the average
value between two functional values in step 4 in order to match the same degree of
freedom of {Pn

h ; P
n−1
h } in step 1.

(v) A unique solution to the matrix system (cf. Equation (34)) will be obtained

(a) either by imposing condition �n+1
h such as specifying �0 at one point on the bound-

ary @� and by assigning a priori known value in �n+1
h⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

∗ ∗ · · · · · ·
...

...
. . . ∗

∗ ... ∗ . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

�1
...

...

...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

�0
...

...

...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(37)

Let us consider the �rst row of the matrix Ŝ. Assign a unity value in the �rst
position and zero values for the other positions. Then the rank of the matrix Ŝ is
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lowered by one by deleting one equation, i.e. there is no need for determining the
value �1. After this procedure, the matrix Ŝ safely becomes non-singular.

(b) or by solving the augmented system [38, p. 115] such that[
Ŝ r

rt̂ 0

]{
�n+1

h

�

}
=

{
Gn+1

0

}
(38)

where r= {1; : : : ; 1} is the right null vector of Ŝ, t̂ denotes the transpose of r and
Gn+1 denotes the right-hand side of Equation (34). The last equation will set the
mean value of � to zero.

4. NUMERICAL RESULTS FOR THE NAVIER–STOKES PROBLEM

For the study of the temporal convergence of the BDF splitting error with the Reynolds
number, we choose the following test �ow problem that was used by Pearson [39], Chorin [1],
Braza et al. [40], Mansutti et al. [41], Strikwerda [42] and others to examine their methods.
This �ow was initialized by Taylor [43] in 1923 for the physical case of a system of vortices
built in a square pattern. It emerges in a cellular �ow, consisting of eddies which rotate
alternative in opposite directions and whose intensity is decayed over time by the e�ect of
viscosity [41]. As quoted by many researchers, the most classical 2D worked example, that
belongs to a special sub-branch of the Beltrami �ows [44] is summarized as

u(x; y; t) = − cos(x) sin(y)e−2t=Re (39)

v(x; y; t) = sin(x) cos(y)e−2t=Re (40)

p(x; y; t) = − 1
4 (cos(2x) + cos(2y))e

−4t=Re (41)

We want to show a numerical result. Assuming that Re=1 we solve Equations (17)–(19)
for �= [−�; �]× [−�; �]. Equations (39)–(40) satisfy the incompressibility constraint. For the
case of Re=1, the solution dies o� rapidly against �t which is good for testing the e
ciency
of time integration. The time t runs from [0; 1] with varying time step �t. We accomplished
these assumptions by imposing the analytical solutions on the initial velocity �elds, on the
pressure and at the boundary @�.
In order to uncover more hidden information both from the velocity and pressure boundary

layers and from the corner vortices, it is useful to produce a thin layer within the domain,
which not only maintains the uniform mesh structure but also has a concentration of triangles
along the boundaries. This so-called boundary-re�ned mesh was used in the Gervais et al.
paper [45] for studying a stability analysis of the 2D lid-driven cavity. The boundary-re�ned
mesh is de�ned as the conformal image of the uniform mesh on [0; 1]2 by the 2D mapping:

X (i)= sin2
(�
2
x(i)

)
; Y (i)= sin2

(�
2
y(i)

)
(42)

where i denotes the number of nodes, and x(i), y(i) are sets of 2D uniform mesh c�oordinates,
and X (i), Y (i) are sets of 2D boundary-re�ned mesh c�oordinates. The �ner the mesh re�ne-
ment, the thinner the layers. For the illustrative purposes, the 2D boundary-re�ned meshes are
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(a) (b)

(c) (d)

Figure 3. Panels (a) and (b) are 2D boundary-re�ned meshes in two FE (P1=P2) spaces. Panels
(c) and (d) are 2D 2-cell boundary-re�ned meshes in two FE (P1=P2) spaces.

Table I. Detail on convergence of the iterative pro-
cess; G1 : 129× 129=65× 65, G2 : 257× 257=129× 129,

G3 : 513× 513=257× 257.
G1 G2 G3

u (cf. Equation (32)) 10 9 14
v (cf. Equation (33)) 10 9 14
� (cf. Equation (34)) 10 14 22
p (cf. Equation (35)) 4 4 4
! (cf. Equation (43)) 4 4 4
 (cf. Equation (45)) 10 17 29

depicted in Figure 3. To verify the convergence rate with respect to the spatial discretization,
we select the grid range from 65× 65 to 513× 513. Table I shows the convergence of the
iterative process that was obtained in the optimal number of iterations.
Through a series of numerical experiments we obtained the rate of convergence for Re=1.

Figures show the error norms against the time step size for di�erent choices of the mesh size.
Scales on both axes are logarithmic. The slopes of the lines allow an estimate of the rate of
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Convergence results for the velocity �elds at Re=1 and T =1 using a pressure point boundary
value in the left panel and using the augmented system in the right panel: (a) and (b) 129× 129 grid;

(c) and (d) 257× 257 grid; and (e) and (f) 513× 513 grid.

convergence. Until stated otherwise, the P2 gradient matrix formulation in concert with the av-
erage procedure of the linear pressure nodes in step 1 is used for all the numerical simulations.
In Figures 4 and 5 the observed rates of convergence are compared with the expected rates.

As for the | · |l∞(0; T ;H 1(�))- and ‖ · ‖l2(0; T ;L2(�))-errors of the approximate velocity �elds, the
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Convergence results for the pressure at Re=1 and T =1 using a pressure point boundary
value in the left panel and using the augmented system in the right panel: (a) and (b) 65× 65 grid;

(c) and (d) 129× 129 grid; and (e) and (f) 257× 257 grid.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Convergence results for the divergence-free velocity �elds at Re=1 and T =1 using a
pressure point boundary value in the left panel and using the augmented system in the right panel:

(a) and (b) 129× 129 grid; (c) and (d) 257× 257 grid; and (e) and (f) 513× 513 grid.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:385–424



CONSISTENT SPLITTING SCHEME FOR UNSTEADY INCOMPRESSIBLE VISCOUS FLOW 401

(a) (b)

(c) (d)

(e) (f)

Figure 7. Convergence results for the vorticity=stream-function at Re=1 and T =1 using a pres-
sure point boundary value in the left panel and using the augmented system in the right panel:

(a) and (b) 129× 129 grid; (c) and (d) 257× 257 grid; and (e) and (f) 513× 513 grid.

scheme appears to have the expected convergence rates of O(�t2). As for the ‖ · ‖l∞(0; T ;L2(�))
and ‖ · ‖l2(0; T ;L2(�))-errors of the approximate pressure, one infers from the �gures that
convergence rates are in O(�t) and O(�t2), respectively. As the reader can note, the rate of
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(a) (b)

(c) (d)

Figure 8. Convergence results for the velocity, pressure, divergence-free and vorticity=stream-function
at Re=1 and T =1 using the augmented system: (a) velocity: 513× 513 grid; (b) pressure: 257× 257

grid; (c) divergence-free: 513× 513 grid; and (d) vorticity=stream-function: 513× 513 grid.

convergence for the pressure does not exhibit a quadratic decay in time. As suggested,
when the grid size is not �ne enough, a reduction of the parameter �t does not enhance
the accuracy.
The error l∞(0; T ;L2(�)) and l2(0; T ;L2(�))-norm calculations with respect to the FE mesh

re�nement of spatial grids and the temporal re�nement of time-steps are presented in Figure 6.
In all cases the convergent rate of approximate divergence-free velocities is of O(h2 + �t2).
A vorticity ! is de�ned by

!=
@v
@x

− @u
@y

(43)

We de�ne a stream-function  such that

u=
@ 
@y

and v=− @ 
@x

(44)
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(a) (b)

(c) (d)

Figure 9. Convergence results for the velocity, pressure, divergence-free and vorticity=stream-function
at Re=1 and T =1 using the augmented system and the rectangular gradient matrix approximation:
(a) velocity: 513× 513 grid; (b) pressure: 257× 257 grid; (c) divergence-free: 513× 513 grid; and

(d) vorticity=stream-function: 513× 513 grid.

From Equations (43) and (44), it follows from that

∇2 =− ! (45)

In the FE literature, it is customary to calculate the vorticity ! using the consistent mass
matrix problem and the stream-function  using the Dirichlet problem. The Dirichlet boundary
condition for the stream-function is considered. In Figure 7, we display the errors as a function
of time. In all vorticity=stream-function variables the convergence rate of the l∞(0; T ;L2(�))-
and l2(0; T ;L2(�))-norm estimations is second-order accurate in time.
Figures 3(c) and (d) show the mixed �nite element mesh for the third problem

(cf. Section 5.3). The mesh is re�ned near all the walls and along the middle of the cavity.
In Figure 8, we show the errors as a function of time using the two-cell boundary-re�ned
mesh layout. We restrict ourselves to using the augmented system for calculating the auxiliary
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(a) (b)

(c) (d)

Figure 10. Convergence results for the velocity, pressure, divergence-free and vorticity=stream-function
at Re=100 and T =1 using a pressure point boundary value: (a) velocity: 513× 513 grid; (b) pressure:
257× 257 grid; (c) divergence-free: 513× 513 grid; and (d) velocity=stream-function: 513× 513 grid.

pressure. For both primitive variables and vorticity=stream-function variables the convergence
rate of the expected norm estimations is of second-order accuracy in time.
There is no noticeable di�erence between the P2 and the P2=P1 gradient matrix approxi-

mations, which are con�rmed by the results given in Figures 4(f), 5(f), 6(f) and 7(f),
and 9.
From these observations and others from various time-step sizes and mesh sizes, the scheme

undoubtedly appears to be unconditionally stable.

4.1. More numerical veri�cations

Let us further examine the numerical accuracy of the approximate pressure. Does its scheme
really perform a second-order accurate, O(�t2) in the l∞(0; T ;L2(�))-norm?
Two analytical examples are considered here to illustrate the con�rmation of the numeri-

cal codes developed for the present analysis. The exact solution of the problem Equations
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(a) (b)

(c) (d)

Figure 11. Convergence results for the velocity, pressure, divergence-free and vorticity=stream-function
at Re=100 and T =1 using the augmented system: (a) velocity: 513× 513 grid; (b) pressure: 257× 257

grid; (c) divergence-free: 513× 513 grid; and (d) vorticity=stream-function: 513× 513 grid.

(1)–(2) on the square domain �= [−�=2; �=2]2 is chosen as follows [46]:

u(x; y; t) = − cos(x) sin(y) sin(2t) (46)

v(x; y; t) = sin(x) cos(y) sin(2t) (47)

p(x; y; t) = − 1
4 (cos(2x) + cos(2y))(sin(2t))

2 (48)

and the other example in �= [0; 1]2 is given in References [11, 13, 14] as follows:

u(x; y; t) = � cos(2�y) sin2(�x) sin(t) (49)

v(x; y; t) = −� sin(2�x) sin2(�y) sin(t) (50)

p(x; y; t) = cos(�x) sin(�y) sin(t) (51)

Due to space restrictions, for this paper, we only consider the boundary-re�ned mesh 513× 513
for velocity, vorticity and stream-function, and 257× 257 for the pressure. In the �rst run, the
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(a) (b)

(c) (d)

Figure 12. Convergence results for the velocity, pressure, divergence-free and vorticity=stream-function
at Re=1 and T =1 using a pressure point boundary value: (a) velocity: 513× 513 grid; (b) pressure:
257× 257 grid; (c) divergence-free: 513× 513 grid; and (d) vorticity=stream-function: 513× 513 grid.

Reynolds number is set to 100, while in the second run, Re=1. A selected �nal time is T =1.
The number of iterative steps for the estimation for the velocity, vorticity and stream-function
is set to 14; 4 and 29, respectively, and for auxiliary pressure and pressure, is set to 22, and 4,
respectively. The P2 gradient matrix is considered.
As indicated in Figures 10–13, convergence rate results of two test cases con�rm that

the approximate pressure is of O(�t2) in the l∞(0; T ;L2(�))- and l2(0; T ;L2(�))-norms.
Therefore, our �ndings coincide with Guermond and Shen’s theoretical prediction.

5. NUMERICAL SIMULATIONS OF 2D DOUBLE LID-DRIVEN CAVITY
PROBLEMS

The numerical simulations of 2D unsteady incompressible viscous �ow in a double-lid driven
cavity are presented in this section. Double lid-driven cavity problems are not as frequently
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(a) (b)

(c) (d)

Figure 13. Convergence results for the velocity, pressure, divergence-free and vorticity=stream-function
at Re=1 and T =1 using the augmented system: (a) velocity: 513× 513 grid; (b) pressure: 257× 257

grid; (c) divergence-free: 513× 513 grid; and (d) vorticity=stream-function: 513× 513 grid.

used as lid driven cavity problems for examining the performance of numerical schemes, but
they share some similar features. For instance, the simplicity of the geometrical con�guration
of the cavity �ow makes the problem handy to code, and easy to re�ne the mesh, apply
boundary conditions, etc. Even though the problem setting looks simple in many aspects, the
�ow structure retains all the �ow physics with counter rotating vortices located at the corners
of the cavity. The change of �ow pattern from a primary vortex to two primary vortices is
observed. Interactions of physical mechanisms between primary vortices and corner eddies
have not yet been fully explored. It is well-documented that the pattern of the pressure or
pressure gradient is similar to the �ow pattern of the velocity �eld. Three singularities that
are located in the three corners where two moving walls meet two rigid walls and where
the standard type of no-slip initial and boundary value conditions is assumed, are a unique
characteristic of the double driven-lid cavity problems. Nevertheless, numerical inaccuracies
of solutions still exist, like ripples, and propagate throughout the neighbourhood in two sharp
positive and negative jumps, which cause unreliable qualitative information on eddy formation,
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growth, separation, and reintegration into non-stationary �ows. Full details on the lid-driven
cavity topic are available in References [47, 48].
As discussed in Section 2, the pressure solution plus any arbitrary constant varying with

the time is also, in concept, a solution of the pressure in the NS system. Any initial value
for the pressure can be selected over the entire domain if the initial velocity is assumed to
be zero. Unless otherwise mentioned, the results shown in this subsection were calculated
from initial velocities and pressure of zero. Application of the augmented system for solving
Equation (34) and use of the P2 gradient matrix approximation were performed in the work.
The relative precision is set to 10−8; the number of iteration for the all the computations
is �xed at 200. The stream-function can be calculated a posteriori once the solution for the
velocities has been obtained. By solving the Poisson equation, we have

@2 
@x2

+
@2 
@y2

=
@u
@y

− @v
@x

(52)

subject to the boundary conditions  |@� =0, and @ =@n|x∈ @�\@�′ =0 and @ =@n|x∈ @�′ =
± 1, where @�′= @�1 ∪ @�2 consists of @�1 and @�2, and stands for the part of @� with
∅= @�1 ∩ @�2. Here, @�1 and @�2 specify the locations of the moving walls. The plus sign
indicates the directions are moving from left to right, and from bottom to top.

5.1. The lids are moving from right to left and from top to bottom

The problem is the same as that used by Pan and Glowinski [15] and Ben-Artzi et al. [16] in
recent studies of the 2D double lid-driven cavity �ow. The following example is a version of
2D double lid-driven cavity �ow de�ned on a unit domain �= [0; 1]× [0; 1], with f =(0; 0).
The associated boundary condition is given by⎧⎪⎪⎨⎪⎪⎩

u= v=0 for x=0; or y=0

u=− 1; v=0 for y=1

u=0; v=− 1 for x=1

(53)

The sketch in Figure 1 demonstrates the velocity boundary conditions. The mesh type was
boundary-re�ned and the time step used was �t=0:0005 for Re=10000.
Figures 14, 16–18 illustrate velocity vector �eld plots, and pressure, vorticity and stream-

function contour plots. Figure 14 indicates that from t=2 to 45, the birth and growth of a
symmetric pair of cat’s eye patterns are gradually induced by increasing the advection �ow.
By observing the �gures, it can be seen that the line of symmetry is maintained as the time
increases. The mechanism for the production and separation of small vortical cells from large
ones along the 45◦ inclined centreline of the cavity is seen. A second mirror-symmetrical pair
of counter-rotating cells appears at the lower left-hand corner. As the time increases, a third
mirror-symmetrical pair of counter-rotating cells emerges at the upper right-hand corner.
No special treatment was considered to smooth out the corner singularities in this study.

The Gibbs-like singularities of the pressure appeared at the double-lid velocity corners, as
shown in Figure 15(a). Judging from the given �gure, no boundary layer e�ect for the pres-
sure along the given boundaries and no node-to-node pressure oscillations were made. To
demonstrate the negligible e�ect on the internal feature of the pressure, except in the neigh-
bourhood of the corner singularities, the following contour plots were cut down from the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

( j) (k) (l)

Figure 14. Time histories of velocity vector �eld plots. The lids are moving from right to left and
from top to bottom. The mesh layout is 33× 33: (a) t=2; (b) t=6; (c) t=10; (d) t=14; (e) t=18;

(f) t=22; (g) t=26; (h) t=30; (i) t=34; (j) t=38; (k) t=42; and (l) t=45.
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Figure 15. Mesh plots of pressure. The lids are moving from right to left and from top to bottom. The
Reynolds number is Re=10 000. The mesh plot is shown for time t=46. The mesh layout is 65× 65

at the top page and 252× 252 at the bottom page. The time step size is �t=0:0005.

actual size of computational grid, i.e. from 257× 257 to 252× 252. Until otherwise stated,
all the pressure contour plots followed the same procedure. As shown in Figure 15(b), the
pressure is in�uenced by the cavity corners. We observe in Figure 16 that the birth, growth
and separation of mirror-symmetrical multi-pairs of pressure patterns remain.
As shown in Figure 17, emphasis is placed upon the structure of symmetrical vortex cells

along the line of symmetry. As the time increases, a pair of elongated vortex cells induced
by two counter-rotating cells at the lower left-hand corner pass through the axis, and move
toward the upper right-hand corner. After hitting the corner, a pair of new counter-rotating
vortex cells is formed. These small secondary and tertiary cells are competing a recirculation
movement=direction again two main primary cells. As illustrated in Figure 17, up to t=45,
the presence of the symmetrical vortex patterns agrees with the numerical results produced by
Ben-Artzi et al. [16]. Despite the numerical solutions of the vorticities=stream-functions that
are obtained by the known velocity values at each time instant, mirror-symmetrical vortex
results still remain, as shown in Figures 17 and 18.

5.2. The lids are moving from left to right and from bottom to top

Because there are no published results for this problem, a 2D double lid-driven cavity is
simulated by letting Re=10000. We consider �t=0:0005. The boundary-re�ned mesh layout
of 513× 513 grid was used. Velocity vector �eld plots, and vorticity, stream-function and
pressure contour plots are shown in Figures 19–22, respectively, for various instants of non-
dimensional time at 2; 6; 10; 14; 18. From these plots we note that a vortex dipole gradually
emerges from the right-hand corner, and the position of the vortex dipole shifts toward the
lower left-hand corner. At t=10, the separation and growth of a symmetric pair of two
vortical structures remains. As the time increases, a second symmetric pair of two vortical
structures gradually forms and grows. At t=18, the symmetrical pattern along the 45◦ inclined
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

( j) (k) (l)

Figure 16. Time histories of pressure contours. The lids are moving from right to left and from top to
bottom. The Reynolds number is Re=10 000. The mesh layout is 252× 252 and the time step size is
�t=0:0005: (a) t=2; (b) t=6; (c) t=10; (d) t=14; (e) t=18; (f) t=22; (g) t=26; (h) t=30;

(i) t=34; (j) t=38; (k) t=42; and (l) t=45.
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Figure 17. Time histories of vorticity contour plots. The lids are moving from right to left and from
top to bottom. The mesh layout is 513× 513: (a) t=2; (b) t=6; (c) t=10; (d) t=14; (e) t=18;

(f) t=22; (g) t=26; (h) t=30; (i) t=34; (j) t=38; (k) t=42; and (l) t=45.
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Figure 18. Time histories of stream-function contour plots. The lids are moving from right to left and
from top to bottom. The Reynolds number is Re=10 000. The mesh layout is 513× 513 and the time
step size is �t=0:0005: (a) t=2; (b) t=6; (c) t=10; (d) t=14; (e) t=18; (f) t=22; (g) t=26;

(h) t=30; (i) t=34; (j) t=38; (k) t=42; and (l) t=45.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:385–424



414 J. C.-F. WONG AND M. K.-H. CHAN

(a) (b)

(c) (d)

(e)

Figure 19. Time histories of velocity vector �eld plots. The lids are moving from left to right and from
bottom to top. The Reynolds number is Re=10 000. The contours are shown for time t=2; 6; 10; 14,

and 18. The mesh layout is 33× 33 and the time step size is �t=0:0005.
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Figure 20. Time histories of pressure contour plots. The lids are moving from left to right and from
bottom to top. The Reynolds number is Re=10 000. The contours are shown for time t=2; 6; 10; 14,

and 18. The mesh layout is 252× 252 and the time step size is �t=0:0005.
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Figure 21. Time histories of vorticity contour plots. The lids are moving from left to right and from
bottom to top. The Reynolds number is Re=10 000. The contours are shown for time t=2; 6; 10; 14,

and 18. The mesh layout is 257× 257 and the time step size is �t=0:0005.
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Figure 22. Time histories of stream-function contour plots. The lids are moving from left to right
and from bottom to top. The Reynolds number is Re=10 000. The contours are shown for time

t=2; 6; 10; 14, and 18. The mesh layout is 513× 513 and the time step size is �t=0:0005.
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Figure 23. Contour plots of u-velocity component. The left- and right-hand lids are moving in the same
direction from bottom to top. The Reynolds number is Re=10 000. The contours are shown for time

t=2; 6; 10; 14, and 18. The mesh layout is 513× 513 and the time step size is �t=0:0005.
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Figure 24. Contour plots of v-velocity component. The left- and right-hand lids are moving in the same
direction from bottom to top. The Reynolds number is Re=10 000. The contours are shown for time

t=2; 6; 10; 14, and 18. The mesh layout is 513× 513 and the time step size is �t=0:0005.
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Figure 25. Time histories of velocity vector �eld plots. The left- and right-hand lids are moving in the
same direction from bottom to top. The Reynolds number is Re=10 000. The contours are shown for

time t=2; 6; 10; 14, and 18. The mesh layout is 33× 33 and the time step size is �t=0:0005.
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Figure 26. Time histories of pressure contour plots. The left- and right-hand lids are moving in the
same direction from bottom to top. The Reynolds number is Re=10 000. The contours are shown for
time t=2; 6; 10; 14, and 18. The mesh layout is 252× 252 and the time step size is �t=0:0005.
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centreline of the cavity remains unchanged. A third symmetric pair of two vortical structures
gradually emerges from the upper left-hand corner and lower right-hand corner.

5.3. The left- and right-hand lids are moving in the same direction from bottom to top

The problem is the same as that used by Kupferman [18] in a recent study of the 2D double
lid-driven cavity �ow. Instead of examining Re=20000, we use Re=10000. The two cell
boundary-re�ned mesh layout with the 513× 513 grid is used. We consider �t=0:0005. The
main goal of our investigation is to discover the symmetry-preserving mechanism on the
�ow �eld. Owing to the symmetrical boundary conditions for the v-component velocity on
the vertical walls, the �ow and pressure �elds perform a symmetrical pattern formulation,
as shown in Figures 23, 24, and 26. Because of the symmetry, the vector �ow �elds in the
right and left halves of the cavity are identical, as shown in Figure 25. We �nd from all
these �gures that the evolution of the two symmetrical patterns gradually grows as the time
increases. From the results displayed in Figures 25 and 26, we see that the pattern of the
velocity vector �eld plots is similar to that of the pressure contour plots. As can be seen
from Figure 25, at t=2 the birth and growth of a single cat’s eye emerges from both the
right- and left-hand sides of the top corner. From t=2 to 6, the two symmetrical �ow �elds
begin interacting with each other. At t=10, the two cat’s eyes collide with each other and
move downward. A mirror-symmetric pair of two counter-rotating cells gradually appears at
the mid-plane of the top cavity. As time goes on, the intensity of the recirculation increases.
At t=14, a third symmetrical pair of two counter-rotating cells gradually emerges from the
lower left- and right-hand corners. At t=18, two symmetrical �ow �elds hit the bottom wall
and rebound upward.

6. CONCLUDING REMARKS

The mathematical model proposed by Guermond and Shen [11] and the computer algorithm
developed in this investigation appear to be suitable for the computation of the 2D double
driven-lid cavity �ows. For moderate Reynolds numbers, two sliding lids produced a 2D
motion at a �xed time interval in agreement with the literature. Despite the large set of
the �nite grid used, the change of �ow pattern from bicellular to multicellular is observed.
A series plot of velocity vector �elds, and pressure, vorticity and stream-function contours
appears to be useful for illustrating symmetrical pairs of multicellular structures.
Our past experience indicated that for double-lid cavity problems, the deterioration in the

structure of a symmetric �ow happened due to the improper choices of the time step size and
grid size, the e�ect of mesh layout, the treatment of the singular corners, and the choice of the
initial values for the pressure. It was shown that it is feasible to improve the axis of symmetry
under appropriate conditions: if a small time-step size is taken and the boundary-re�ned grid
is used with greater resolution near the boundaries [49]. Further investigation of this work
could include the long time behaviour of the unsteady vortex structure, the occurrence of
the Hopf bifurcation, the cause of the symmetry-breaking and the special treatment of the
non-linear term. These topics will be presented in a separate study.
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